dust and carbon at z = 8.3

Tom Bakx

Credit: National Astronomical Observatory of Japan

Hi! I'm Tom!

DESHIMA

Dutch

HerBS

300 SMGs @ z > 2 90% Redshift complete @ 2021 FaintLens

Wales

日本の食べ物

Carbon

dust and carbon at z = 8.3

The source

... the lines ...

... and the spectrum!

Theoretical intermission

Photo-dissociation regions

O & B stars

Y-band dropout from the HFF

Laporte et al. 2014

MACS0416_Y1 Hubble Frontier Fields LBG

Tamura et al. 2019

[OIII] 88µm at z = 8.31

[OIII] 88µm at z = 8.31

dv	.= 141 ± 21 km/s
	.= $(1.2\pm0.3) \times 10^9 L_{\odot}$
z	.= 8.3118 ± 0.0003
S _{88µm}	.= 137 ± 26 µJy
LFIR	.= (1.7±0.3) × 10 ¹¹ L _o

[OIII] 88µm deficit at high-z

Starburst at z = 8.3

.=	3.5 Myr
.=	$0.2^{0.16} 0.18Z_{\odot}$
.=	$2.4 \times 10^8 \ M_{\odot}$
.=	$57~M_{\odot}$ / yr
	.= .= .= .=

Stellar component at z = 15

Mdust	.=	$4 imes 10^6M_\odot$
t _{age}	.=	0.3 Gyr

Detection of [CII] at z = 8.31

dv	.= 191 ± 29 km/s	
L _[CII]	.= (1.4±0.2) × 10 ⁸ L ₀	Э
z	.= 8.31132 ± 0.0003	7
S _{158µm}	.= < 18 μJy (3σ)	

Detection of [CII] at z = 8.31

High [OIII]/[CII] ratio

CLOUDY modeling by Harikane+2019

- Higher ionization parameter
- Lower gas metallicity
- Higher density
- Lower C/O ratio
- Lower covering fraction
- CMB attenuation effect
- Spatially-extended [CII]
- Inclination effect

CLOUDY modeling by Harikane+2019

- Higher ionization parameter
- Lower gas metallicity
 Higher density
- Lower C/O rat
- Lower covering fraction
- CMB attenuation e
- Spatially-extended [C

Inclination effec

Dwarf Galaxies also have low CF

- Higher ionization parameter
- Lower gas metallicity Higher density
- Lower C/O rat
- Lower covering fraction
- CMB attenuation e
- Spatially-extended [C

Inclination effec

Cormier et al. 2019

Or a combination of things?

- Higher ionization parameter
- Lower gas metallicity Higher density
- Lower C/O rat
- Lower covering fraction
- CMB attenuation e
- Spatially-extended [C]

Inclination effec

Even including these...

- Higher ionization parameter Lower gas metallicity
- Higher density
- Lower C/O ratio
- Lower covering
- CMB attenuation effect
 - Spatially-extended [
 - **Inclination effect**

Though CLOUDY rejects...

Higher ionization parameter

- Lower gas metallicity
- **Higher density**
- Lower C/O rat
- Lower covering f
- CMB attenuation e
- Spatially-extended [CII]
- Inclination effect

Most full scale simulations still disagree, but...

Arata et al. 2020

Full scale simulations still disagree

Pallottini et al. 2019

Full scale simulations still disagree

[CII] deficit at high redshift

[CII] deficit at high redshift

Rotation at z = 8.31?

Or an outflow?

Ginolfi et al. 2019

Or an outflow?

 $\frac{\dot{M}}{SFR} \sim 0.1 - 100$

Same goes for an inflow...

Arata et al. 2019 $\frac{\dot{M}}{SFR} \sim 0.1 - 100$

Same goes for an inflow...

Or a merger?!

Though no dust detection...

Arata et al. 2019

Table 1:	: The fitting	parameters c	of the tested	single-te	emperature s	pectrum fits	
		$\beta = 1.5$				$\beta = 2.0$	
$T_{z=0}$	μ IR Lum.	χ^2	μM_{dust}	$T_{z=0}$	μ IR Lum.	χ^2	μM_{dust}
(K)	$(10^{11} L_{\odot})$	-	$(10^6 {\rm M}_{\odot})$	(K)	$(10^{11} L_{\odot})$	-	$(10^6 {\rm M}_{\odot})$
30	0.31	18.9	11	-	0.49	15.8	5.1
50	1.34	10.3	3.0	-	2.21	6.79	1.2
70	4.53	6.15	1.6	-	8.11	3.40	0.6
90	12.2	4.15	1.1	-	23.8	2.00	0.4
110	28.5	3.07	0.8	-	59.8	1.30	0.3
130	59.2	2.42	0.7	-	133.4	0.90	0.2
121	46.0	2.7 (90%)	0.74	80	15.9	2.7 (90%)	0.5

MACS0416_Y1 Typical [CII] / FIR values

MACS0416_Y1 [OIII] and [CII] freq. cause biases

dust and carbon at z = 8.3

The source ...

... the lines ...

... and the spectrum!

dust and carbon at z = 8.3

Tom Bakx

Credit: National Astronomical Observatory of Japan

dust and carbon at z = 8.3

Tom Bakx

Credit: National Astronomical Observatory of Japan